- (18) T. F. Lai and R. E. Marsh, Acta Crystallogr., Sect. B, 28, 1982 (1972).
- (19) T. J. Kistenmacher, Acta Crystallogr., Sect. B, 30, 1610 (1974).
 (20) F. G. Mann and D. Purdie, J. Chem. Soc., 1549 (1935).

- (21) F. R. Hartley, Organomet. Chem. Rev., Sect. A, 6, 119 (1970).
 (22) J. Chatt and L. M. Venanzi, J. Chem. Soc., 2787 (1955).
 (23) R. A. Sparks et al., "Operations Manual. Syntex PI Diffractometer", Syntex Analytical Instruments, Cupertino, Calif., 1970.
- (24) All programs used in the solution and refinement of the structure were written by J.C.C. Plots are by ORTEP (C. K. Johnson)
- (25) The integrated intensity (I) was calculated according to the expression $I = [S - (B_1 + B_2)/B_R]T_R$, where S is the scan count, B_1 and B_2 are

the background counts, $B_{\rm R}$ is the ratio of background time to scan time, and $T_{\rm R}$ is the 2 θ scan rate in degrees per minute. The standard deviation of I was calculated as $\sigma(I) = T_{\rm R}[S + (B_1 + B_2)/B_{\rm R}^2 + \sigma(I)^2]^{1/2}$.

- (26) All least-squares refinements were based on the minimization of $\sum w_i ||F_0|$
- $\frac{|F_{c}||^{2}}{(27)} = \frac{|F_{c}||^{2}}{|F_{o}| |F_{c}||/|F_{o}||} \times 100\% \text{ and } R_{2} = \frac{|\int w_{i}||F_{o}| |F_{c}||^{2}/\sum w_{i}|F_{o}|^{2}}{|F_{o}|^{2}} = \frac{|F_{o}||^{2}}{|F_{o}|^{2}} + \frac{|F_{o}||^{2}}{|F_{o}$ × 100%.
- (28) Atomic scattering factors used for all nonhydrogens atoms are from H. P. Hanson, F. Hermann, J. D. Lea, and S. Skillman, Acta Crystallogr., 17, 1040 (1964); those for the hydrogen atoms are from R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 43, 3175 (1965).

Contribution from the University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87545

Diagnostic Features of Transition-Metal-SO₂ Coordination Geometries

G. J. KUBAS

Received February 3, 1978. Revised Manuscript Received June 25, 1978

SO₂ complexes have been carefully examined in regard to possible correlations involving their physicochemical properties and SO₂ coordination geometries (coplanar MSO₂, pyramidal MSO₂, bridging MSO₂M, O,S-bonded SO₂, or ligand-SO₂ interaction). On a 1:1 basis, general correlations of geometry with SO infrared stretching frequencies, reversibility of SO_2 binding, and tendency of a complex to undergo the sulfato reaction can be made, but exceptions do exist. However, certain combinations of properties have been found to be diagnostic of specific geometries and appear to be useful criteria for identifying modes of SO₂ binding. The synthesis and properties of two new complexes, Ir(SPh)(CO)(PPh₃)₂(SO₂) and [RhCl- $(PPh_3)_2(SO_2)_2$, are described in relation to the above correlations. These species as well as $RhCl(PPh_2Me)_3(SO_2)$ were found to react with atmospheric oxygen to form sulfates, which also were isolated and characterized.

Introduction

Few, if any, small molecules coordinate to a larger variety of substrates in a greater number of modes than sulfur dioxide. Excluding "insertion"-type structures, la five different SO₂ coordination geometries have now been established by X-ray crystallography (Chart I). A complete listing of complexes possessing these structures is given in Table I. Of obvious interest is a means other than X-ray crystallography to determine which of these structural possibilities is most probable in a given transition-metal complex containing SO_2 . In the past, efforts to correlate structure and physicochemical properties were primarily limited to the observation that compounds with pyramidal MSO₂ generally possessed a lower set of SO stretching frequencies than those with coplanar MSO₂.^{1b} Also, in regard to the question of whether the SO₂ is S-bonded or O-bonded, a diagnostic based on Δ , the observed difference between the two SO stretching frequencies, has been proposed.² As part of an ongoing study of SO_2 complexes,³⁻¹⁵ we have been closely scrutinizing complexes in regard to $\nu(SO)$, reversibility of SO₂ attachment, and reactivity with oxygen to form sulfates and have found that, in the majority of cases, correlations of structure with each of these properties can be made on a one-to-one basis. Occasional exceptions, even to the structure-infrared relation, do occur, which make structural predictions based on any one given property unreliable. However, certain combinations of properties have been found to be, without exception, diagnostic of specific coordination geometries and appear to be useful for identifying modes of SO_2 binding in newly synthesized complexes.

In the course of the above investigation, new SO_2 adducts have been synthesized and characterized also. The observed properties of these species will be discussed in relation to the proposed diagnostic features.

Experimental Section

All reactions except those requiring oxygen as a reactant were carried out in an atmosphere of dry nitrogen. Sulfur dioxide (Matheson, 99.98%), phosphines (Strem Chemicals), and other reagents were purchased commercially and used as received. $MCl(CO)(PPh_3)_2(SO_2)$ (M = Rh, Ir) and RhCl(PPh_3)_3 were synthesized according to methods described in Inorganic Syntheses (Vol.

IX and X, respectively). Ir(SPh)(CO)(PPh₃)₂,¹⁶ RuCl₂(PPh₃)₂(SO₂),¹⁷ The final X, respectively. If (SFI)(CC)(1143)2, RdC12(1143)2(SO2), CpMn(CO)₂(SO₂)¹⁸ (Cp = η -C₅H₅), [Ir(dppe)₂]Cl¹⁹ (dppe = Ph₂PCH₂CH₂PPh₂), Ni(p₃)(SO₂)²⁰ [p₃ = 1,1,1-tris(diphenyl-phosphinomethyl)ethane], RhCl(PCy₃)₂(SO₂)²¹ (Cy = cyclohexyl), Mo(CO)₃(phen)(η ²-SO₂)²² (phen = 1,10-phenanthroline), and $RhCl(PPh_2Me)_3(SO_2)^{23}$ were prepared according to literature methods. Elemental analyses were performed by Galbraith Laboratories, Inc., Knoxville, Tenn. Thermogravimetric curves and Nujol mull infrared spectra were recorded using Perkin-Elmer Models TGS-2 and 521, respectively.

Preparation of RhCl(SO₄)(PPh₂Me)₃ \cdot ³/₄C₆H₆. RhCl-(PPh₂Me)₃(SO₂) (0.35 g) was dissolved in 50 mL of warm benzene, and the solution was filtered and saturated with oxygen. A yellow-orange crystalline precipitate (0.13 g) formed upon allowing the loosely stoppered solution to stand for 3 days at room temperature. The precipitate was collected on a frit, washed with a small quantity of benzene and then pentane, and dried in air. Infrared and elemental analysis indicated that lattice benzene was present in the sulfate. Anal. Calcd for $C_{43.5}H_{43.5}P_3O_4SClRh$: C, 58.4; H, 4.9; P, 10.4; S, 3.6. Found: C, 58.3; H, 4.8; P, 10.0; S, 3.8.

Thermogravimetric analysis (2.5 °C/min heating rate) of $RhCl(SO)_4(PPh_2Me)_3 \cdot \frac{3}{4}C_6H_6$ indicated loss of benzene at 50-100 °C, loss of one phosphine at 150-225 °C, and further phosphine loss to 500 °C.

Preparation of Ir(SPh)(CO)(PPh₃)₂(SO₂)·C₇H₈. Ir(SPh)(CO)- $(PPh_3)_2$ was dissolved in toluene (~0.4 g/25 mL). The resulting yellow solution was treated with excess SO_2 gas, giving an immediate color change to deep red. The filtered solution was then reduced to

Transition-Metal-SO₂ Coordination Geometries

Table I. Structurally Characterized Complexes Containing SO₂^a

pyramidal ZSO ₂	coplanar MSO ₂	bridging MSO_2M	S,O-bonded	O-bonded
$Z = metal \begin{cases} IrCl(CO)(PPh_3)_2(SO_2)^{46} \\ RhCl(CO)(PPh_3)_2(SO_2)^{49} \\ Pt(PPh_3)_3(SO_2)^6 \\ Pt(PPh_3)_2(SO_2)_2^5 \\ [RhCl(PPh_3)_2(SO_2)]_2^{13} \\ RhCl(ttp)(SO_2)^{39d} \\ Z = ligand \begin{cases} Pt(CH_3)(PPh_3)_2I-SO_2^{48} \\ Cu(SPh)(PPh_2Me)_3SO_2^{12} \\ Cu_2I_2(PPh_2Me)_4\cdotSO_2^{11} \\ Cu_2I_2(PPh_2Me)_4\cdotSO_2^{11} \\ Ch_4(MNe_2)_2\cdot2SO_2^{57} \\ [PPh_3Bz]I\cdotSO_2^{15} \end{cases}$			Rh(NO)(PPh ₃) ₂ (η^2 -SO ₂) ⁹ RuCl(NO)(η^2 -SO ₂)(PPh ₃) ₂ ²⁶ Mo(CO) ₃ (phen)(η^2 -SO ₂) ²⁷	F₅SbOSO ⁵⁸

^a Ligand abbreviations: $p_3 = 1,1,1$ -tris(diphenylphosphinomethyl)ethane, dpm = Ph₂PCH₂PPh₂, phen = 1,10-phenanthroline, ttp = PhP-(CH₂CH₂CH₂PPh₂)₂.

Table II. Infrared Frequencies

compound	$\nu(SO_2, SO_4), cm^{-1}$		
$ \begin{array}{l} RhCl(PPh_{2}Me)_{3}(SO_{2}) \\ [RhCl(PPh_{3})_{2}(SO_{2})]_{2} \cdot 2CHCl_{3} \\ Ir(SPh)(CO)(PPh_{3})_{2}(SO_{2}) \cdot C_{7}H_{8}{}^{a} \\ [RhCl(SO_{4})(PPh_{3})_{2}] \\ Ir(SPh)(SO_{4})(CO)(PPh_{3})_{2} \\ RuCl_{2}(SO_{4})(PPh_{3})_{2} \end{array} $	1163, 1025 1166, 1031 1192, 1042 1252, 1065, 958, 667, 623 1295, 1160, 875, 646, 595 1262, 1060, 930, 656, 586		
RhCl(SO ₄)(PPh ₂ Me) ₃ . ³ / ₄ C ₈ H ₆ 1247, 1146, 927, 639, 601 ^{<i>a</i>} ν (CO) = 2007 cm ⁻¹ . ^{<i>b</i>} ν (CO) = 2053 cm ⁻¹ .			

half its volume by solvent removal in vacuo and cooled to -20 °C, resulting in the precipitation of microcrystalline deep red Ir(SPh)-(CO)(PPh_3)_2(SO_2) \cdot C_7H_8 in good yield. The product was collected on a frit, washed with diethyl ether, and dried in vacuo. Anal. Calcd for $C_{50}H_{43}O_3P_2S_2Ir$: C, 59.5; H, 4.3; S, 6.3; P, 6.1. Found: C, 61.1; H, 4.4; S, 6.3; P, 6.2.

The solid complex is slowly converted to the orange sulfato species upon standing in air and loses volatiles rapidly upon heating to 100 °C or greater. The evolved toluene and SO_2 were separated by trap-to-trap distillation on a vacuum line and were identified by mass spectroscopy.

Preparation of IrX(SO₄)(CO)(PPh₃)₂ (X = Cl, SPh). Toluene solutions of IrX(CO)(PPh₃)₂(SO₂) (X = Cl, SPh) were allowed to stand in air. For X = SPh, precipitation of orange Ir(SPh)(SO₄)-(CO)(PPh₃)₂ was complete after 1 day, but over 1 week was required for the formation of off-white IrCl(SO₄)(CO)(PPh₃)₂. The precipitates were washed with toluene and then air-dried. The sulfates are nearly insoluble in toluene but are soluble in CH₂Cl₂. Infrared bands due to bidentate sulfate were observed for IrCl(SO₄)(CO)(PPh₃)₂ at frequencies which agreed well with literature values^{24,25} and for Ir(SPh)(SO₄)(CO)(PPh₃)₂ at frequencies given in Table II.

Preparation of [RhCl(PPh₃)₂(SO₂)]₂·2CHCl₃. Excess SO₂ was passed through a solution of RhCl(PPh₃)₃ (0.4 g) in 15 mL of CHCl₃. SO₂-saturated ethanol (50 mL) was then added and the solution was stirred. After several minutes, precipitation of a red-orange microcrystalline solid commenced (supersaturation can occur; rapid cooling induced crystallization in one case). The mixture was allowed to stand in a freezer overnight and then filtered. The ethanol-washed and vacuum-dried product weighed 0.308 g (84% yield). Anal. Calcd for C₇₄H₆₂O₄P₄Cl₈S₂Rh₂: C, 52.5; H, 3.7; P, 7.3; S, 3.8; Cl, 16.8. Found: C, 51.6; H, 3.9; P, 7.4; S, 3.0; Cl, 17.0. [RhCl(PPh₃)₂·(SO₂)]₂·2CHCl₃ can also be prepared from RhCl(PPh₃)₂(C₂H₄) or RhCl(PPh₃)₂(H₂) in nearly identical fashion.

Heating the complex to 115 °C in vacuo for 1 h resulted in partial loss of volatiles (2.84 mmol of a mixture of CHCl₃ and SO₂/mmol of dimer). Thermogravimetric analysis (1.25 °C/min heating rate, N₂ purge) indicated a gradual 20% weight loss at 35–160 °C (theory for loss of CHCl₃ and SO₂: 21.7%), immediately followed by slow phosphine loss above 160 °C.

Preparation of [RhCl(SO₄)(PPh₃)₂]. A solution of [RhCl-(PPh₃)₂(SO₂)]₂·2CHCl₃ (0.53 g) in benzene was allowed to stand in air for several hours. A golden-yellow precipitate of the sulfate (0.15 g) formed, which was washed with benzene and air-dried. Anal. Calcd for $C_{72}H_{60}O_8S_2Cl_2Rh_2$: C, 57.0; H, 4.0; P, 8.2; S, 4.2; Cl, 4.7; M_r , 1518. Found: C, 57.0; H, 4.1; P, 7.9; S, 4.0; Cl, 4.6; M_r , 1517 (in CHCl₃).

Reaction of RhCl(CO)(PPh₃)₂(SO₂) and Oxygen in Benzene. Over a period of several days, an oxygen-saturated benzene solution of RhCl(CO)(PPh₃)₂(SO₂) underwent a color change from yellow to red and began to precipitate a yellow solid. Several days after the red coloration appeared, the solution became yellow-orange and no further precipitation occurred. The yellow solid was collected on a frit, washed with benzene, and air-dried. The yield was low, and infrared analysis indicated that the precipitate contained a mixture of RhCl(SO₄)(CO)(PPh₃)₂ and [RhCl(SO₄)(PPh₃)₂]₂.

Reaction of [Ir(dppe)_]Cl with SO₂ and O₂. [Ir(dppe)_]Cl did not yield an isolatable SO₂ adduct upon treatment with SO₂ in CHCl₃ solution. [Ir(dppe)_]Cl was recovered unchanged upon solvent removal. However, exposure of the above mixture to oxygen for several days led to decolorization of the solution. Addition of hexane gave an oil which solidified upon trituration with acetone. The infrared spectrum of the white solid indicated that it was [Ir(SO₄)(dppe)_]Cl. Bands due to coordinated sulfate were observed at 1270–1290, 1160, 880–890, and 645 cm⁻¹ (lit.²⁵ 1280–1295, 1170, 885, 655 cm⁻¹).

Determinations of Reversibility or Nonreversibility of SO_2 Binding and Reactivity of Oxygen with Selected SO_2 Complexes

(a) $RuCl_2(PPh_3)_2(SO_2)$ ·CHCl₃. Recrystallization of $RuCl_2$ -(PPh₃)_2(SO₂) from a CHCl₃-C₂H₅OH solution yielded a chloroform solvate, a sample (0.159 g, 0.175 mmol) of which was placed in a tube and heated to 130 °C for 2 h on a vacuum line. Volatiles (0.327 mmol) collected in a -196 °C trap were separated via a -83 °C trap into SO₂ (0.145 mmol) and CHCl₃ (0.182 mmol) fractions. Mass spectroscopy of the latter indicated that a small amount of ethanol was also present. The molar ratio of recovered SO₂ to initial adduct was 0.83. The residue obtained on cooling the heated solid could not be converted back to $RuCl_2(PPh_3)_2(SO_2)$ upon addition of SO₂ (gas or liquid).

An oxygen-saturated benzene solution of $RuCl_2(PPh_3)_2(SO_2)$ deposited a solid over a period of several hours which gave infrared absorptions characteristic of coordinated bidentate sulfate (Table II).

(b) $CpMn(CO)_2(SO_2)$. Since this compound readily sublimes unchanged at <100 °C, it is presumed that the SO₂ is bound irreversibly.

Within minutes after exposure to oxygen, a benzene solution of $CpMn(CO)_2(SO_2)$ began to precipitate a yellow-brown solid. When the solution was allowed to stand overnight, the supernatant became completely colorless. The solid which proved to be insoluble in organic solvents, was collected, dried, and characterized by infrared spectroscopy. No absorptions due to carbonyl or sulfate were present in the spectrum. Thus, decomposition of the complex occurred rather than sulfate formation.

(c) Mo(CO)₃(phen)(η^2 -SO₂). Thermogravimetric analysis (2.5 °C/min heating rate, nitrogen purge) showed rapid loss of volatiles at 170–215 °C corresponding to 20% of sample weight, followed by additional weight loss to 500 °C at a slower rate (38.5% total loss). Since the expected weight loss for removal of SO₂ is 15%, the compound undergoes decomposition rather than reversible SO₂ loss.

 $Mo(CO)_3(phen)(\eta^2-SO_2)$ is nearly insoluble in benzene at room temperature but is somewhat soluble in boiling solvent. Therefore a sample (50 mg) was refluxed in benzene (25 mL) overnight open to the atmosphere. A dark colored precipitate formed which did not show bands due to sulfate. Evaporation of the supernatant solution

Figure 1. Infrared spectra of typical SO_2 and sulfato complexes (Nujol mulls between CsBr plates).

yielded 15 mg of red needles which proved to be Mo(CO)₄(phen).
(d) Ni(p₁)(SO₂). A sample of Ni(p₁)(SO₂) was heated to 150 °C

in vacuo. No loss of volatiles was observed and the infrared spectrum of the cooled residue was unchanged.

Solutions of the complex changed color slightly upon exposure to air. However, no sulfato species precipitated and oil formation occurred upon solvent removal. This agrees with previously reported results of a similar experiment.²⁰

(e) RhCl(PCy_3)₂(SO₂). No loss of volatiles was observed for a sample heated to 200 °C under nitrogen in a thermogravimetric apparatus.

Reaction with oxygen in solution gave results similar to those in (d) and those previously reported.²¹ Apparently phosphine and/or metal oxidation occurs which precludes any possibility of sulfate information. However, finely divided solid RhCl(PCy₃)₂(SO₂) underwent a color change from brown to orange-brown on exposure to air in a stoppered vial for several months. Strong infrared absorptions at 1155 and 645 cm⁻¹ appeared while absorptions at 1264 and 1112 cm⁻¹ due to coordinated SO₂ diminished in intensity. Further exposure to pure oxygen for several weeks resulted in decomposition since all infrared bands became much weaker and broader. Thus apparently the SO₂ complex slowly oxidizes to a sulfate which is itself unstable and is transformed to uncharacterized species.

(f) RhCl(PPh₂Me)₃(SO₂). Thermogravimetric analysis (5 °C/min heating rate, N₂ purge) showed that SO₂ is lost at 150-200 °C but phosphine loss also begins to occur in this range, thus denying strict reversibility to the SO₂ binding. At a heating rate of 1.25 °C/min, SO₂ plus one phosphine is removed at 150-200 °C, followed by loss of remaining phosphines at 200-500 °C.

Results and Discussion

Relation of SO Stretching Frequencies to SO₂ Coordination Geometry. An extensive literature search on transitionmetal-SO₂ complexes covering nearly 100 references and 140 compounds has been carried out in order to aid in the correlation of their physicochemical properties. One of the easiest and most definitive characterization methods is infrared spectroscopy since two strong bands due to SO stretching modes are normally present in the spectra of all SO₂ complexes, as exemplified in Figure 1. Furthermore, the peaks rarely overlap in cases where more than one type of SO_2 binding is present in the same complex (e.g., both metal- SO_2 and ligand-SO₂ interactions). The ranges in which ν (SO) fall for each geometry type known to occur in transition-metal- SO_2 complexes are illustrated in Figure 2. The graph is based on all known data on complexes which either have been structurally characterized or which, in all probability, possess structures which can be assumed to contain a specific sub-

 $^{a}v(s0)$ for Ni(p₃)(s0₂) = 1190, 1050 cm⁻¹.

 $^{b}\mathrm{A}$ molecule must be known to contain at least two metal atoms before it can be assumed to possess this geometry.

^CIn the majority of cases.

 d_{Too} few examples known to establish a general trend.

Figure 2. Diagnostic features of SO₂ coordination geometries. The ν (SO) ranges are based on ν (SO) observed for compounds given in Table I as well as those reported in ref 17, 24, 29–35, 37, 39, 42, 46, and 60–72.

strate-SO₂ geometry. Thus, the structure of Ir(SPh)(CO)- $(PPh_3)_2(SO_2)$ undoubtedly is similar to the structure known for $IrCl(CO)(PPh_3)_2(SO_2)$, and $\nu(SO)$ for both of these complexes would be included in the range for pyramidal MSO₂. As it turns out, all but a very few complexes can be categorized. It is clear that some of the ranges for $\nu(SO)$, unlike analogous ranges for $\nu(NO)$ in nitrosyl complexes, are relatively narrow and do not overlap with certain other ranges. This is especially true for the coplanar MSO_2 and pyramidal MSO₂ categories, as expected from previously reported qualitative observations. However, two striking exceptions are known. $Ni(p_3)(SO_2)^{20}$ and $Ni(PPh_3)_3(SO_2)^8$ have coplanar MSO_2 , but $\nu(SO)$'s at 1190 and 1050 cm⁻¹ and 1205 and 1055 cm⁻¹, respectively, are well within the region for pyramidal MSO₂. Thus, other criteria are clearly necessary to differentiate between the geometries, especially since some of the frequency ranges, such as those for coplanar MSO₂ and pyramidal ML-SO₂, do overlap. These will be discussed in following sections.

A more quantitative examination of Figure 2 reveals that the overall frequency spread for the high-frequency SO₂ stretch (ν_1) is 210 cm⁻¹ and that for the low-frequency stretch (ν_2) is 262 cm⁻¹. Percentagewise, all of the geometry-specific ranges (the bar graphs in Figure 2) are less than 51% of the total respective spreads (the percentages span 24–51% for v_1 and 16–33% for v_2). Interestingly, the ranges for pyramidal MSO₂ and bridging MSO₂M are nearly identical. Although perhaps fortuitous, this coincidence is certainly not surprising since in both instances the SO_2 is S bound and the interaction with the metal(s) is of the "bent" variety (bridging O-bonded or S,O-bonded SO₂ has not been structurally documented as yet). Differentiation between the pyramidal and bridging geometries thus usually will not be possible on the basis of infrared evidence alone, but knowledge of the stoichiometry and molecularity of a complex could easily clarify the situation.

At this time the S,O-bonding mode has been found to occur only in Rh(NO)(PPh₃)₂(η^2 -SO₂), ⁹ RuCl(NO)(η^2 -SO₂)-(PPh₃)₂,²⁶ and Mo(CO)₃(phen)(η^2 -SO₂),²⁷ although it is reasonable to expect more examples to eventually be characterized. As can be seen in Figure 2, the SO stretches are significantly lower in energy than those found for S-bonded complexes. Also, the observed differences between the stretching frequencies, Δ , are 190 cm⁻¹ for the Rh complex, ca. 250 cm⁻¹ for the Ru complex, and 214 cm⁻¹ for the Mo species, whereas complexes containing SO₂ bound to transition metals via only sulfur give Δ values in the range 125–184 cm⁻¹.

As has been previously pointed out, trends in the value of Δ appear to be a useful diagnostic feature for the mode of SO₂ coordination (S or O bonding).² Values in excess of 190 cm⁻¹ (the value for liquid SO_2) appear to be characteristic of O bonding, as in F₅SbOSO which gives $\Delta = 220 \text{ cm}^{-1} \left[\nu(\text{SO})\right]$ \simeq 1320, 1100 cm⁻¹], whereas values lower than 190 cm⁻¹ are typical for S bonding.² The same criteria found for O bonding thus appear to be applicable for S,O bonding as well. However, these two bonding situations in all likelihood will be resolvable on the basis of $\nu(SO)$. Some care must be exercised in applying the Δ criterion since complexes with weak ligand-SO₂ interactions, such as $Cu_m I_m (PR_3)_n \times SO_2$,¹¹ can also give Δ values as high as 190 cm⁻¹. However, species of this type display $\nu(SO)$ at frequencies nearly as high as those found in free SO_2 (1340 and 1150 cm⁻¹) and consequently are readily identifiable. On the other hand, complexes with stronger ligand-SO₂ binding, such as Cu(PR₃)_n(SR')·SO₂,¹² can exhibit $\nu(SO)$ and Δ values indistinguishable from those of pyramidal MSO₂ complexes. In these cases, additional criteria, which will be discussed next, are necessary to establish whether the SO_2 is bound to ligand or metal.

Sulfate Formation and Its Relation to SO_2 Coordination Geometries. Quite a number of SO_2 -containing five-coordinate rhodium,^{24,28-31} iridium,^{29,32,33} and ruthenium^{7,17,24,34} complexes have been previously observed to undergo the sulfato reaction

$$L_n M-SO_2 + O_2 \rightarrow L_n M \bigvee_{n=0}^{n} \bigvee_{n=0}^{n} O$$

Similarly, several d¹⁰ complexes of nickel,³⁵ palladium,^{36,37} and platinum^{5,36,38} readily form bidentate sulfates. The sulfates are easily identifiable by infrared spectroscopy, as can be seen in Figure 1. The strong peak in the 630-680-cm⁻¹ region, which is rarely obscured by ligand peaks, is very characteristic. We have found additional examples of sulfate formation. The conversion in solution of $[RhCl(PPh_3)_2(SO_2)]_2$, RhCl-(PPh_2Me)_3(SO_2), and Ir(SPh)(CO)(PPh_3)_2(SO_2) to their respective sulfates was relatively rapid and straightforward, the products starting to precipitate from solution within 1 h to 1 day. However, in the case of $IrCl(CO)(PPh_3)_2(SO_2)$, about 1 week was required. This may explain why the latter had been previously reported²⁴ to be nonreactive toward oxygen in solution. The reaction of oxygen with RhCl(CO)- $(PPh_3)_2(SO_2)$ in benzene is interesting in that both RhCl- $(SO_4)(CO)(PPh_3)_2^{29}$ and $[RhCl(SO_4)(PPh_3)_2]_2$ are formed. Apparently the carbonyl is labile enough to be slowly spontaneously lost during the course of the oxidation. Both $RhCl(CO)(PPh_3)_2(SO_2)$ and its iridium analogue had previously been reported to react with oxygen in the solid state for unspecified periods of time to give $MCl(SO_4)(CO)$ - $(PPh_3)_2$.²⁹ In all cases, the d⁸ and d¹⁰ complexes undergoing sulfate formation have been shown to or are expected to possess pyramidal MSO₂ geometry. It is thus tempting to propose that, in general, metal-SO₂ complexes with this geometry will be reactive with oxygen in solution to give sulfates. However, occasional exceptions will occur since $RhCl(ttp)(SO_2)$ (ttp = $PhP(CH_2CH_2CH_2PPh_2)_2)$, which has now been confirmed^{39a} to contain pyramidal \overline{MSO}_2 as suggested by $\nu(SO)$ at 1155 and 1030 cm⁻¹, has been reported to be stable toward oxygen in solution.^{39b}

In regard to complexes with coplanar MSO₂ it is apparent that they normally do not form sulfates. $[RhCl(NH_3)_4(S-O_2)]Cl$ is air stable in solution,⁴⁰ and solutions of CpMn- $(CO)_2(SO_2)$, CpRh $(C_2H_4)(SO_2)$,⁴ Ni $(p_3)(SO_2)$, and RhCl- $(PCy_3)_2(SO_2)$ decompose to non-sulfate-containing products upon atmospheric exposure. However, a d⁶ six-coordinate complex, OsHCl(CO)(PCy_3)_2(SO_2), surprisingly has been found to form OsCl $(SO_4)(CO)(PCy_3)_2$.¹⁴ Furthermore,

RuCl₂(PPh₃)₂(SO₂), which has not been structured, but apparently possesses coplanar MSO₂ judging by ν (SO) at 1300 and 1130 cm⁻¹, also has been reported to form a sulfate.¹⁷ This has been confirmed by our isolation of the latter, which gives an infrared spectrum typical of bidentate sulfate coordination (Table II).

Complexes with bridging SO₂ have generally not been reported to undergo sulfate formation. The presumably SO₂-bridged species [Pd(PPh₃)(SO₂)]₃ will yield Pd-(PPh₃)₂(SO₄) provided PPh₃ is present, however.³⁷ Not surprisingly, oxidation of ligand-bound SO₂ to sulfate has never been observed. Finally, regarding the S,O-bonded complexes, Rh(NO)(PPh₃)₂(η^2 -SO₂) and RuCl(NO)(η^2 -SO₂)(PPh₃)₂ have been found to react with oxygen in solution to give Rh-(NO)(SO₄)(PPh₃)₂^{8,9,24} and RuCl(NO)(SO₄)(PPh₃)₂,⁴¹ respectively, but Mo(CO)₃(phen)(η^2 -SO₂) does not give a sulfate. Thus it is clear that a compound's metal–SO₂ geometry is in itself not a limiting factor in the ability of the compound to undergo the sulfato reaction, although complexes with pyramidal MSO₂ appear to have by far the greatest proclivity for doing so.

Correlations of Reversibility of SO₂ Binding with SO₂ Coordination Geometry. In a practical sense, a complex can be regarded as containing reversibly bound SO₂ if the SO₂ can be removed upon moderate (<200 °C) heating to give a stable SO_2 -free species. In order for the above process to be strictly reversible, the SO_2 complex must be regenerable upon SO_2 readdition. The classic example here is $MCl(CO)(PPh_3)_2^{-1}$ (SO₂) (M = Rh, Ir),⁴² which contains pyramidal MSO₂. Many other five-coordinate d⁸ complexes also are known to contain reversibly bound SO₂. $Ir(SPh)(CO)(PPh_3)_2(SO_2)$. C_7H_8 readily loses both toluene of solvation and SO₂ at 100 °C in vacuo to give Ir(SPh)(CO)(PPh₃)₂ and is obviously similar in nature. In addition to the five-coordinate d⁸ complexes, d¹⁰ species with pyramidal MSO₂, e.g., Pt- $(PPh_3)_2(SO_2)_2$,⁵ also readily lose and readd SO₂. Thus, in general, complexes with pyramidal MSO2 possess reversible bound SO₂, which is expected since, in this case, the M-S distance is relatively long (2.35-2.50 Å) and the SO₂ is behaving as a Lewis acid. The only known exception thus far is $RhCl(ttp)(SO_2)$, which is stable to 200 °C and begins to decompose on further heating before losing SO_2 .³⁹

Of the complexes known to contain coplanar MSO₂ (Table I), all retain SO_2 on heating (the Cp compounds are readily sublimable) except $OsHCl(CO)(PCy_3)_2(SO_2)$, which loses SO_2 reversibly at 100 °C to form OsHCl(CO)(PCy₃)₂.¹⁴ Also, $RuCl_2(PPh_3)_2(SO_2)$, which has infrared frequencies indicative of coplanar MSO₂, loses SO₂ upon heating, though apparently not in a strictly reversible fashion (formation of chloridebridged species is likely to occur upon SO₂ removal). Thus, nonreversible SO₂ binding can be correlated with the coplanar geometry in most, but not all, cases. This is in line with the relatively short M-S distances (2.0-2.1 Å) usually observed for the coplanar geometry and the Lewis base behavior of SO₂ in these types of complexes. Interestingly, OsHCl(CO)- $(PCy_3)_2(SO_2)$, which has by far the longest M-S distance (2.24) Å) of any complex with coplanar MSO_2 , loses SO_2 reversibly, while $RhCl(ttp)(SO_2)$, which has a longer M-S distance (2.33) Å) but a distance which is short relative to most pyramidal cases, 39a does not. Thus, certain gradations of properties within structural categories may eventually evolve.

Compounds with bridging MSO₂M geometry have not generally been reported to contain reversibly bound SO₂, as expected. However, reversible insertion of SO₂ into the metal-metal bonds of Pd₂Cl₂(dpm)₂ (dpm = Ph₂PCH₂PPh₂) and several Pd and Pt analogues has recently been reported.⁴³ The adducts possess the novel "A-frame" bridging geometry, as shown by the crystal structure of Pd₂Cl₂(dpm)₂(SO₂). Thus, in certain situations involving metal-metal bonding, SO_2 may indeed reversibly bridge two metals.

There are yet too few examples of complexes with η^2 -SO₂ to generalize their behavior. Although solid Rh(NO)-(PPh₃)₂(η^2 -SO₂) loses SO₂ on heating, the residue, which apparently contains nitrosyl-bridged species judging by a shift of ν (NO) to lower frequency, does not readd SO₂ to form the original complex.⁴⁴ Mo(CO)₃(phen)(η^2 -SO₂) is stable to 170 °C, whereupon loss of volatiles ensues. However, thermogravimetric data in the 170–210 °C range show a weight loss exceeding that expected for removal of SO₂, indicating decomposition occurs. Solution studies revealed that the SO₂ in both the Rh and Mo complexes is readily displaceable by neutral donor bases such as phosphines, or, in case of Mo-(CO)₃(phen)(η^2 -SO₂), acetonitrile.^{9,27} Thus, the SO₂ is clearly labile but not reversibly bound in the strict sense.

In all cases, SO_2 coordinated to ligands has been found to be reversibly bound.

Correlation of SO₂ Reversibility with Sulfate Formation. One correlation can be made which so far appears to have no exceptions: all complexes with reversibly metal-bound SO₂ form bidentate sulfates upon reaction with oxygen. The geometry of the MSO₂ group and other factors apparently have no bearing on this relationship, even for example in the case of the coordinatively saturated complex OsHCl(CO)-(PCy₃)₂(SO₂). The latter has been found to lose hydride upon reaction with oxygen to form bidentate-sulfate-containing OsCl(SO₄)(CO)(PCy₃)₂.¹⁴

Since all ligand-bound SO_2 can be reversibly removed but does not oxidize to sulfate, a useful test for the ML-SO₂ structure is readily obvious. Complexes containing both ligandand metal-bound SO_2 present a more difficult problem, however. Fortunately, infrared studies generally allow differentiation between the two types of SO_2 attachment, although it is conceivable that this may not always be true.

Determination of Probable SO₂ Coordination Geometries in Complexes of Unknown Structure. Although exceptions to the previously discussed structure-property correlations exist, it nonetheless appears possible to identify with a high degree of confidence the type of SO₂ attachment in most transitionmetal-SO₂ complexes by correlating sets of properties with structure. This can be accomplished by referring to Figure 2, which can be utilized in two ways. If a particular geometry is known or assumed for a complex, then the complex will probably, but not necessarily, exhibit the tabulated properties. However, using the table in a converse sense, accurate predictions of geometry can be made if the observed properties of a SO₂ complex match one of the listed sets of properties. For example, newly synthesized complexes that are found to possess reversibly bound SO₂, form sulfates, and have ν (SO) in the ranges 1237–1150 and 1065–990 cm^{-1} will very likely contain pyramidal MSO₂. No exceptions to predictions of this type have been found thus far.⁴⁵ Compounds possessing sets of properties not listed, such as $OsHCl(CO)(PCy_3)_2(SO_2)$, $RhCl(ttp)(SO_2)$, and $Ni(p_3)(SO_2)$, are not as yet amenable to identification of the mode of SO_2 bonding by this method, since they are literally in a class by themselves until further examples are found. Thus, Figure 2 also serves as a means of singling out complexes with unusual properties, assuming that species with the geometries and attendant properties given in Figure 2 will remain predominant. At this time it is difficult to rationalize the singular behavior displayed by the three aforementioned complexes. Ligand considerations may be important, since the Os complex possesses a trans-labilizing hydride and bulky phosphines while the Rh and Ni compounds have constraining phosphine groups. However, RuCl2- $(PPh_3)_2(SO_2)$, which has not been structured crystallographically, exhibits properties similar to OsHCl(CO)-

 $(PCy_3)_2(SO_2)$ but yet does not possess unusual ligands. Also, Ni $(PPh_3)_3(SO_2)$ has proven to have structure and properties quite comparable to those of Ni $(p_3)(SO_2)$.⁸ Further synthetic and X-ray structural studies are thus needed to aid in understanding the relation of steric and electronic factors to the physicochemical properties of SO₂ complexes.

Synthesis and Characterization of SO₂ Complexes. Applications of the Structure-Property Correlations. The diagnostics set forth in Figure 2 have proven to be of considerable value in coordinating our synthetic and structural effort to develop bonding principles in transition-metal-SO₂ complexes.³⁻¹⁵ They have also been useful in singling out occasional misinterpretations of data in the literature by leading to reexaminations of compounds with properties that conflict with their proposed structures. Examples of this and some new synthetic work will now be discussed.

[Ir(dppe)₂]Cl had been reported to give a bis-SO₂ adduct.¹⁹ However, both the white color and ν (SO) (1276, 1163 cm⁻¹) of the solid isolated were indicative of a sulfato complex. Our attempts to isolate an SO₂ adduct were unsuccessful, but a white sulfate, with infrared bands matching the above and also corresponding to ν (SO₄) reported for [Ir(SO₄)(dppe)₂]Cl· H₂O,²³ formed upon reaction of [Ir(dppe)₂]Cl with a mixture of SO₂ and O₂. Thus, it is likely that a similar oxidation had occurred inadvertently in the original study.

The addition of SO₂ to $Ir(SPh)(CO)(PPh_3)_2$ in toluene yielded a mono-SO₂ adduct $Ir(SPh)(CO)(PPh_3)_2(SO_2) \cdot C_7H_8$. This reaction was of interest because of the possibility of attachment of SO_2 to both the metal and the mercaptide sulfur. The latter type of binding has recently been found to occur in SO_2 adducts of organophosphinecopper(I) mercaptides and Pt(PPh₃)₂(SPh)₂.¹² In the iridium adduct, it appears that only metal-bound SO₂ is present, since the carbonyl stretching frequency increases from 1950 cm⁻¹ for Ir(SPh)(CO)(PPh₃)₂ to 2007 cm⁻¹ upon SO₂ coordination and ν (SO) is typical for the expected pyramidal MSO₂ geometry. Ligand-SO₂ binding also had been expected especially since $Ir(SPh)(CO)(PPh_3)_2$ had been reported to be monomeric in solution.¹⁶ However, the mercaptide sulfur apparently is too sterically crowded to allow attachment of SO₂. $Ir(SPh)(CO)(PPh_3)_2(SO_2) \cdot C_7H_8$ possesses properties similar to the previously reported²⁹ SC_6F_5 analogue, including reactivity with O_2 in both solid and solution states to give sulfates. The latter plus the reversibility of the SO_2 coordination clearly supports a structure similar to that of $IrCl(CO)(PPh_3)_2(SO_2)$.⁴⁶

Examples of four-coordinate SO₂ complexes of d⁸ metals have been rare and consequently of considerable interest to us. The reaction of solid $IrCl(PPh_3)_2(N_2)$ with SO₂ had been reported to give $IrCl(PPh_3)_2(SO_2)$, which possessed $\nu(SO)$ indicative of coplanar MSO_2 .⁴⁷ However, the complex is unstable in solution and could not be characterized further. Preparation of solution-stable monomeric $RhX(PPh_3)_2(SO_2)$ (X = Cl, Br, I) from RhX(PPh₃)₃ and SO₂ in *n*-alkane had been claimed earlier²⁸ but, in light of the instability of $IrCl(PPh_3)_2(SO_2)$, this report appeared to be in need of further investigation. The reaction of RhCl(PPh₃)₃ with SO₂ in CHCl₃ solution was thereupon carried out, as well as a similar reaction utilizing $RhCl(PPh_3)_2(C_2H_4)$ as starting material. In both instances, the product was the chloride-bridged dimer $[RhCl(PPh_3)_2(SO_2)]_2 \cdot 2CHCl_3$. The structure¹³ of the latter (Figure 3) showed axially bound sulfur dioxide ligands and pyramidal RhSO₂ geometries. ν (SO) were located at 1166 and 1031 cm⁻¹, in the range expected for pyramidal MSO₂ and in good agreement with the frequencies reported by Levison and Robinson for their "type A" $RhX(PPh_3)_2(SO_2)$ complexes (for X = Cl, ν (SO) = 1172, 1033 cm⁻¹). Thus, it would appear that the "type A" species in all probability are actually halide-bridged dimers. Further evidence for this is

Figure 3. Projection of the Rh coordination sphere in [RhCl-(PPh₃)₂(SO₂)]₂·2CHCl₃.¹³

the observation that [RhCl(PPh₃)₂(SO₂)]₂·2CHCl₃ reacts with O_2 in solution to give a sulfato species with $\nu(SO_4)$ (Table II) nearly identical with that reported²⁵ for the sulfato product obtained by Levison and Robinson. Elemental analysis and molecular weight measurements indicate that the sulfate, like the SO₂ complex, is also a chloride-bridged dimer, and has the stoichiometry $[RhCl(SO_4)(PPh_3)_2]_2$. The aforementioned authors also obtained in admixture with the "type A" com-plexes, 30% "type B" $RhX(PPh_3)_2(SO_2)$ (X = Br, I) with v(SO) at ~1288 and 1124 cm⁻¹. It is possible that these species are indeed monomeric with coplanar MSO₂, judging by the $\nu(SO)$ positions. However, as can be seen in Figure 2, these frequencies are also characteristic of ligand-bound SO_2 . Thus it is likely that species containing SO_2 bound to both metal and halide ligands (e.g., as in $Ir(CO)(PPh_3)_2$ - $(SO_2)I-SO_2^{48}$ were formed and interpreted as being a mixture of "type A" and "type B" complexes. This is further amplified by the failure to obtain "type B" complexes for X = Cl, since chloride binds SO_2 much more weakly than bromide or iodide. The situation just described is thus an excellent example of the usefulness of the proposed diagnostics in distinguishing between various structural possibilities.

An authentic four-coordinate d⁸ SO₂ complex, RhCl- $(PCy_3)_2(SO_2)$, has now recently been synthesized²¹ and structurally characterized.²⁷ It possesses a coplanar MSO₂ geometry as predicted by its properties $[\nu(SO) = 1266,$ 1111-1121 cm⁻¹; SO₂ is nonreversibly bound; it does not form a sulfate].

Lastly, in contrast to RhCl(PPh₃)₃, RhCl(PPh₂Me)₃ was found²³ to add SO₂ to form monomeric, five-coordinate RhCl(PPh₂Me)₃(SO₂). The latter possesses ν (SO) (Table II) typical of pyramidal MSO₂ and forms a sulfate, RhCl-(SO₄)(PPh₂Me)₃, possessing infrared frequencies characteristic of bidentate coordination (Table II). Thus, merely by varying phosphine size and basicity, using essentially identical synthetic procedures, one can obtain (a) a four-coordinate complex with coplanar MSO_2 , $RhCl(PCy_3)_2(SO_2)$, (b) a five-coordinate species with presumably pyramidal MSO₂, RhCl- $(PPh_2Me)_3(SO_2)$, or (c) a five-coordinate chloride-bridged dimer with two pyramidal MSO₂ moieties, [RhCl(PPh₃)₂- $(SO_2)]_2$. The influence of ligand on coordination geometry is quite striking in this system, well illustrating the usefulness of SO_2 as a probe to the bonding in transition-metal complexes.

Summary

Diagnostic properties of transition-metal-SO₂ complexes have been studied which, when considered in a groupwise fashion, have thus far proven to be quite accurate indicators of the mode of SO_2 bonding in a given complex.

In no case does the observed properties of a compound lead to an incorrect diagnosis of the SO_2 coordination geometry, although in several instances structural predictions cannot be made because the set of properties is not consistent with any of the "standard" sets. Although SO stretching frequencies may eventually prove to be less geometry dependent than they now appear to be, at this time they are by themselves fairly reliable structural indicators. For example, the third known case of S,O bonding was discovered²⁷ in $Mo(CO)_3$ (phen)- $(\eta^2$ -SO₂) primarily due to scanning the literature for unusually low SO stretching frequencies with a separation (Δ) greater than 190 cm⁻¹. In certain systems, such as Rh^I-SO₂ complexes, predictions of the overall coordination geometry (e.g., five-coordinate bridged dimer vs. square planar) are also possible based on the diagnosed MSO₂ coordination geometry.

Acknowledgment. The author is grateful to Drs. R. A. Penneman, R. R. Ryan, P. G. Eller, and D. C. Moody for their insightful advice concerning the above-discussed correlations and for allowing advance disclosure of X-ray structural results. This work was performed under the auspices of the Division of Basic Energy Sciences of the U.S. Department of Energy.

Registry No. RhCl(PPh₂Me)₃(SO₂), 59889-13-3; [RhCl-(PPh₃)₂(SO₂)]₂, 63455-06-1; Ir(SPh)(CO)(PPh₃)₂(SO₂), 68297-99-4; $[RhCl(SO_4)(PPh_3)_2]_2, \ 68307-32-4; \ Ir(SPh)(SO_4)(CO)(PPh_3)_2, \ 68318-19-4; RuCl_2(SO_4)(PPh_3)_2, \ 68307-33-5; RhCl(SO_4)(PPh_2Me)_3, \ 68318-19-4; RuCl_2(SO_4)(PPh_3)_2, \ 68307-33-5; RhCl(SO_4)(PPh_2Me)_3, \ 68318-19-4; RuCl_2(SO_4)(PPh_3)_2, \ 68307-33-5; RhCl(SO_4)(PPh_2Me)_3, \ 68318-19-4; RuCl_2(SO_4)(PPh_3)_2, \ 68307-33-5; RhCl(SO_4)(PPh_3Me)_3, \ 68318-19-4; RuCl_2(SO_4)(PPh_3)_2, \ 68307-33-5; RhCl(SO_4)(PPh_3Me)_3, \ 68318-19-4; RuCl_2(SO_4)(PPh_3Me)_3, \ 6831$ 68307-34-6; [RhCl(C₂H₄)₂]₂, 12081-16-2; RhCl(PPh₃)₃, 14694-95-2; [Ir(SO₄)(dppe)₂]Cl, 21519-09-5; Ir(SPh)(CO)(PPh₃)₂, 51935-95-6; RhCl(CO)(PPh₃)₂(SO₂), 16050-42-3; [Ir(dppe)₂]Cl, 15390-38-2; RuCl₂(PPh₃)₂(SO₂), 56105-07-8; CpMn(CO)₂(SO₂), 51508-47-5; $Mo(CO)_3(phen)(\eta^2-SO_2), 68297-98-3; Ni(p_3)(SO_2), 58657-89-9;$ RhCl(PCy₃)₂(SO₂), 63742-63-2.

References and Notes

- (a) A. Wojcicki, Adv. Organomet. Chem., 12, 31 (1974); (b) D. M. (1)P. Mingos, Transition Met. Chem., 3, 1 (1978).
 D. M. Byler and D. F. Shriver, Inorg. Chem., 15, 32 (1976)

- R. R. Ryan and P. G. Eller, *Inorg. Chem.*, **15**, 494 (1976).
 R. R. Ryan, P. G. Eller, and G. J. Kubas, *Inorg. Chem.*, **15**, 797 (1976).
- (5) D. C. Moody and R. R. Ryan, *Inorg. Chem.*, 15, 1823 (1976).
 (6) P. G. Eller, R. R. Ryan, and D. C. Moody, *Inorg. Chem.*, 15, 2442 (1976).
- (7) D. C. Moody and R. R. Ryan, Cryst. Struct. Commun., 5, 145 (1976).
- (8) D. C. Moody and R. R. Ryan, manuscript in preparation. (9)D. C. Moody and R. R. Ryan, J. Chem. Soc., Chem. Commun., 503
- (1976); Inorg. Chem., 16, 2473 (1977) (10)
- D. C. Moody and R. R. Ryan, *Inorg. Chem.*, **16**, 1052 (1977). P. G. Eller, G. J. Kubas, and R. R. Ryan, *Inorg. Chem.*, **16**, 2454 (1977).
- (11)
- (12) P. G. Eller and G. J. Kubas, J. Am. Chem. Soc., 99, 4346 (1977).
 (13) G. J. Kubas and R. R. Ryan, Cryst. Struct. Commun., 6, 295 (1977).
- (14) R. R. Ryan and G. J. Kubas, *Inorg. Chem.*, 17, 637 (1978).
 (15) P. G. Eller and G. J. Kubas, *Inorg. Chem.*, 17, 894 (1978).
- (16) T. Gaines and D. M. Roundhill, Inorg. Chem., 13, 2521 (1974).
- (17) S. Cenini, A. Mantovani, A. Fusi, and M. Keubler, Gazz. Chim. Ital., 105, 255 (1975)

- (18) C. Barbeau and R. J. Dubey, *Can. J. Chem.*, **51**, 3684 (1973).
 (19) L. Vaska and D. L. Catone, *J. Am. Chem. Soc.*, **88**, 5324 (1966).
 (20) P. Dapporto, S. Midollini, A. Orlandini, and L. Sacconi, *Inorg. Chem.*, 15, 2768 (1976).
- (21) H. L. M. van Gaal and J. P. J. Verlaan, J. Organomet. Chem., 133, 93 (1977)
- C. G. Hull and M. H. B. Stiddard, J. Chem. Soc. A, 710 (1968). (23)C. E. Betts, R. N. Haszeldine, and R. V. Parish, J. Chem. Soc., Dalton
- Trans., 2218 (1975). (24) J. Valentine, D. Valentine, Jr., and J. P. Collman, Inorg. Chem. 10, 219 (1971).
- J. J. Levison and S. D. Robinson, J. Chem. Soc. A, 762 (1971). (25)
- (26)R. D. Wilson and J. A. Ibers, Inorg. Chem., 17, 2134 (1978).
- (27) R. R. Ryan and G. J. Kubas, manuscript in preparation.
- (28) J. J. Levison and S. D. Robinson, Inorg. Nucl. Chem. Lett., 4, 407 (1968).
- (29) M. H. B. Stiddard and R. E. Townsend, J. Chem. Soc. A, 2719 (1970).
- (30) J. T. Mague and E. J. Davis, Inorg. Chem., 16, 131 (1977)

- (31) J. T. Mague and M. O. Nutt, *Inorg. Chem.*, 16, 1259 (1977).
 (32) R. J. Fitzgerald, N. Y. Sakkab, R. S. Strange, and V. P. Narutis, *Inorg. Chem.*, 12, 1081 (1973). (33) C. K. Brown, D. Georgiou, and G. Wilkinson, J. Chem. Soc. A, 3120 (1971)
- (34) S. Cenini, A. Fusi, and G. Capparella, J. Inorg. Nucl. Chem., 33, 3576 (1971).
- (35) S. Otsuka, A. Nakamura, Y. Tatsuno, and M. Miki, J. Am. Chem. Soc., 94, 3761 (1972).
- (36) J. J. Levison and S. D. Robinson, J. Chem. Soc., Dalton Trans., 2013
- K. v. Werner, W. Beck, and U. Bohner, Chem. Ber., 107, 2434 (1974).
- (38)C. D. Cook and G. S. Jauhal, J. Am. Chem. Soc., 89, 3066 (1967).
- (39) (a) P. G. Eller and R. R. Ryan, private communication; (b) P. R. Blum and D. W. Meek, Inorg. Chim. Acta, 24, L75 (1977).

- (40) L. H. Vogt, Jr., J. L. Katz, and S. E. Wiberley, Inorg. Chem., 4, 1157 (1965)
- (41) M. H. B. Stiddard and R. E. Townsend, J. Chem. Soc., Chem. Commun., 1372 (1969)
- (42) L. Vaska and S. S. Bath, J. Am. Chem. Soc., 88, 1333 (1966).
 (43) L. S. Benner, M. M. Olmstead, H. Hope, and A. L. Balch, J. Organomet. Chem., 153, C31 (1978).
 (44) D. C. Moody, private communication.
 (45) In efficiency of the state of t
- (45) In all cases, structurally characterized compounds (Table I) that possess one of the sets of properties given in Figure 2 contain the SO₂ coordination geometry predicted on the basis of the properties.
- S. J. La Placa and J. A. Ibers, Inorg. Chem., 5, 405 (1966). (46)(47) A. C. Jesse, J. F. van Baar, D. F. Stufkens, and K. Vrieze, Inorg. Chim.
- Acta, 17, L13 (1976). (48) M. R. Snow and J. A. Ibers, Inorg. Chem., 12, 224 (1973)
- (49) K. W. Muir and J. A. Ibers, Inorg. Chem., 5, 1921 (1969).
- (50) D. C. Moody and R. R. Ryan, *Inorg. Chem.*, in press.
 (51) M. R. Churchill, B. G. DeBoer, and K. L. Kalra, *Inorg. Chem.*, 12, 1646
- (52) M. R. Churchill and K. L. Kalra, Inorg. Chem., 12, 1650 (1973).
- (53) J. Meunier-Piret, P. Piret, and M. van Meerssche, Bull. Soc. Chim. Belg., 76, 374 (1967).
- (54) S. Otsuka, Y. Tatsuno, M. Miki, T. Aoki, M. Matsumoto, H. Yoshioka, and K. Nakatsu, J. Chem. Soc., Chem. Commun., 445 (1973).
- (55) M. Angoletta, P. L. Bellon, M. Manassero, and M. Sansoni, J. Organomet. Chem., 81, C40 (1974)
- (56) D. van der Helm, J. D. Childs, and S. D. Christian, Chem. Commun., 887 (1969).

- (57) J. D. Childs, D. van der Helm, and S. D. Christian, Inorg. Chem., 14, 1386 (1975)
- (58) J. W. Moore, H. W. Baird, and H. B. Miller, J. Am. Chem. Soc., 90, 1358 (1968)
- (59) (a) P. L. Bellon, M. Manassero, and M. Sansoni, Atti II convegno Cristallografico Italo, Jugoslavo, Dubrovnik, May-June 1976; (b) M. Angoletta, L. Malatesta, and G. Caglio, J. Chem. Soc., Dalton Trans., 2131 (1977)
- (60) G. Yagupsky, C. K. Brown, and G. Wilkinson, J. Chem. Soc. A, 1392 (1970).
- (61) M. P. Yagupsky and G. Wilkinson, J. Chem. Soc. A, 2813 (1968).
- (62) A. Palazzi, M. Graziani, L. Busetto, G. Carturan, and U. Belluco, J. Organomet. Chem., 25, 249 (1970).
- (63) A. van der Ent and A. L. Onderdelinden, Inorg. Chim. Acta, 7, 203 (1973).
- (64) (a) T. E. Nappier, Jr., and D. W. Meek, J. Am. Chem. Soc., 94, 307 (1972); (b) T. E. Nappier, Jr., D. W. Meek, R. M. Kirchner, and J. A. Ibers, *ibid.*, **95**, 4194 (1973).
- (65) M. A. Bennett and T. W. Turney, Aust. J. Chem., 26, 2321 (1973).
- (66) R. Burt, M. Cooke, and M. Green, J. Chem. Soc. A, 2645 (1969).
- (67) J. K. Ruff, Inorg. Chem., 6, 2080 (1967).
- (68) A. L. Balch and B. Tulyathan, Inorg. Chem., 16, 2840 (1977)
- (69) M. L. H. Green and R. N. Whitely, J. Chem. Soc. A, 1943 (1971).
- (70) J. W. Dart, M. K. Lloyd, R. Mason, and J. A. McCleverty, J. Chem. Soc., Dalton Trans., 2039 (1973).
- (71) P. R. Brookes, J. Organomet. Chem., 43, 415 (1972).
- F. G. Moers, R. W. M. ten Hoedt, and J. P. Langhout, J. Inorg. Nucl. (72)Chem., 36, 2279 (1974).

Contribution from the Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6

Stereochemistry and Mechanisms of Mercury(II) Chloride Cleavage of threo-1,2-Dideuteriophenethyl Compounds of Iron, Manganese, and Tungsten

D. DONG, D. A. SLACK, and M. C. BAIRD*

Received May 4, 1978

Mercury(II) chloride cleaves the alkyl ligands from threo-PhCHDCHDFe(CO)₂(η^5 -C₃H₃) and trans-(threo-PhCHDCHD)W(CO)₂(PEt₃)(η^5 -C₅H₅) with retention of configuration, while that from *cis*-(*threo*-PhCHDCHD)Mn(CO)₄PEt₃ is cleaved with inversion of configuration, to give phenethylmercury(II) chloride. The first two reactions are believed to proceed via $S_{\rm F}$ (oxidative) processes, the last via an $S_{\rm F}2$ (inversion) mechanism. The differences are rationalized in terms of the expected energy gap between the HOMO and the metal-carbon σ -bonding orbital for each compound.

Cleavage of alkyl-, alkenyl-, or aryl-metal σ bonds by mercury(II) to give the corresponding organomercury(II) compounds (eq 1) is a reaction of great generality and even

$$RML_n + HgX_2 \rightarrow XML_n + RHgX$$
(1)

R = alkyl, alkenyl, aryl L = neutral, anionic ligands

X = halide, acetate, etc.

of environmental importance¹ but one which is surprisingly poorly understood mechanistically when M is a transition metal. Thus although, as Jensen and Rickborn² and Matteson³ have observed, considerable is known about metal-exchange reactions of organometallic compounds of the main-group metals, much less is known about similar reactions or organotransition-metal compounds.4,5

A key datum in the elucidation of the mechanism of a reaction such as (1), when the α -carbon atom of R is saturated, is the stereochemistry of the transformation at the α -carbon atom. We have previously demonstrated the advantages of the primary alkyl ligand threo- α , β -dideuteriophenethyl (threo-PhCHDCHD) in studying the stereochemistry of a variety of olefin elimination,^{6,7} alkyl migration,^{7,8} halogen cleavage,⁹ and sulfination⁸ reactions. We now consider the stereochemistry of mercury(II) chloride cleavage reactions of the compounds threo-PhCHDCHDFe(CO)₂(η^5 -C₅H₅) (I), cis-(threo-PhCHDCHD)Mn(CO)₄PEt₃ (II), and trans-(threo-PhCHDCHD)W(CO)₂(PEt₃)(η^{5} -C₅H₅) (III), all of

which react with mercury(II) chloride, as in (1), to give PhCHDCHDHgCl. When considered in conjunction with pertinent kinetics studies on similar compounds of the types η^{5} -C₅H₅Fe(CO)₂R,^{4,10} RMn(CO)₅,^{11,12} and η^{5} -C₅H₅M(CO)₃R (M = Mo, W),¹³ the stereochemical data lead to reasonable conclusions concerning the mechanisms of the reactions. Brief mention of some of this work has been made previously.^{14,15}

Experimental Section

IR spectra were run on a Perkin-Elmer 180 spectrometer and NMR spectra were taken on a Bruker HX60 spectrometer. Compounds I,⁹ II,⁸ and III⁸ were prepared as described in the literature, by treating erythro-PhCHDCHDOTs with the anions $[\eta^5-C_5H_5Fe(CO)_2]^-$, $[Mn(CO)_4PEt_3]^-$, and $[\eta^5-C_5H_5W(CO)_2PEt_3]^-$, respectively. All solvents were dried and deoxygenated before use.

Mercuration reactions were carried out by treating each phenethylmetal compound with a slightly more than equimolar amount of HgCl₂ in acetone (I) or methylene chloride (II, III). The courses of the reactions could be followed by observing the disappearance of the carbonyl stretching bands of $I, {}^9 II, {}^8$ and III^8 and the appearance of the carbonyl stretching bands of the products η^5 -C₅H₅Fe(CO)₂Cl, cis-Mn(CO)₄(PEt₃)Cl, and trans-η⁵-C₅H₅W(CO)₂(PEt₃)Cl, respectively. In all cases, the reactions appeared to proceed very cleanly, with no formation of metal-mercury compounds, as has been observed in some cases.⁴ After completion of the reactions, the organomercury products were obtained by removing the solvent under reduced pressure, extracting the solids with petroleum ether, and then recrystallizing the residues from methylene chloride-petroleum ether. Phenethylmercuric chloride is a white, crystalline compound, mp 168-169 °C (lit.¹⁶ 165.5-166 °C).